(Beat Frequency Oscillation – англ.)

За основу была взята схема металлоискателя из книги "Энциклопедия радиолюбителя" (издание второе, дополненное, В.М.Пестриков, Наука и Техника, 2001г, стр.204, ISBN 5-94387-039-3). Изначально статья была напечатана в журнале "Радио" 1989г, №8, с.65, 66. Автор В.Яворский, г.Киев.

В изначальной схеме отсутствует стабилизатор напряжения питания. Этот факт влияет на уход частоты генератора, и без стабилизатора на подсаженой до 7,5В батарейке частоту приходится подстраивать каждые 10 секунд! Из недостатков важным является использование высокоомных головных телефонов (ТОН-1, ТОН-2 или ТА-1), которые сложно достать. Рабочая частота слишком высокая для поиска различных металлов. Также генерация оптимальной для поиска металлов частоты (7,5кГц) перестраиваемого генератора сама не начинается при подключении питания. И наиболее важным недостатком схемы является сам принцип её работы, который не позволяет добиться параметров, достаточных для практического использования на природе. В схеме наблюдается подстройка опорного генератора под частоту перестраиваемого. Предлагаемая технология изготовления катушки слишком сложна. Вызывает сомнение работоспособность выпрямителя как удвоителя напряжения.

В предлагаемой схеме добавлен стабилизатор напряжения, изменена рабочая частота на 7,5кГц, выходной каскад заменён на однотранзисторный с подключением наушников. Основные достоинства схемы- простота и малое потребление тока- 3мА без наушников, и 7,5мА с наушниками. Все эксперименты проводились с замером расстояния срабатывания до конкретного объекта в сантиметрах при помощи линейки.
Переделанная, итоговая схема металлоискателя:

Посмотрев осциллографом сигнал на перестраиваемом генераторе я обнаружил, что сигнал имеет высокочастотные колебания в моменты переключения элементов:

Чтобы сгладить их я поставил конденсатор ёмкостью 3,3нФ между выводами 3,5,6 микросхемы и землёй. При этом заметно снизился уровень помех, а также перестраиваемый генератор начал запускаться при включении питания сам.

На практике не было замечено разницы между использованием приведённым в схеме смесителем сигналов на конденсаторах и смесителем на полевых транзисторах.
Применение НЧ фильтров не давало заметного эффекта при заметном ослаблении сигнала.

Основные способы улучшения характеристик металлоискателей на биениях- уменьшение помех (устранение источников помех и фильтрация), стабилизация частоты опорного генератора, применение плоской катушки. Также имеет смысл повысить напряжение на катушке, использовать несколько рабочих частот.

Диаметр катушки 180мм, 105 витков. Катушка использовалась без экрана. Экран при желании можно сделать из фольги. Катушка обматывается изолентой, потом фольгой, потом снова изолентой. Максимальная чувствительность данной схемы с описанной катушкой- толстая алюминиевая пластинка 4Х4см на расстоянии 11см.
Вместо микросхемы К176ЛЕ5 можно попробовать использовать К176ЛА7, К176ПУ1, К176ПУ2, К561ЛА7, К564ЛА7, К561ЛН2.
Переменный резистор можно применить совмещённый с выключателем. Транзисторы я использовал КТ315.

Просмотр реакции генераторов на металл осциллографом дал важный результат. При расстроенных генераторах при поднесении алюминиевой пластины к катушке наблюдалось увеличение частоты перестраиваемого генератора, а частота опорного при этом не изменялась. Это наблюдалось как с конденсаторным смесителем, так и без него. Однако у настроенных на одну частоту генераторов при поднесении алюминиевой пластины наблюдалось увеличение частоты обоих генераторов как с конденсаторным смесителем, так и без него. Это наблюдение подтверждает наличие положительной связи между генераторами, и подтверждает непричастность к этому конденсаторного смесителя.

Немного почитав радиолюбительские форумы по изготовлению металлоискателей , обнаружил, что большинство людей собирающих металлоискатели , на мой взгляд, незаслуженно списывают со счетов металлоискатели на биениях — так называемые BFO металлоискатели . Якобы это технология прошлого века и «детские игрушки». — Да, это простой и непрофессиональный прибор, требующий определенных навыков и опыта в обращении. Он не имеет четкой селективности металлов и требует подстройки в процессе эксплуатации. Однако и с ним можно производить удачный поиск при определенных обстоятельствах. Как вариант — пляжный поиск — идеальный вариант для металлоискателя на биениях .

Место для поиска с металлоискателем.

С металлоискателем нужно ходить там, где люди что-то теряют. Мне повезло, у меня есть такое место. Неподалеку от моего дома расположен заброшенный речной песчаный карьер, на котором летом постоянно отдыхают люди бухая и купаясь в реке. Понятное дело, они постоянно что то теряют. На мой взгляд, лучшего места для поиска с металлоискателем BFO придумать нельзя. Потерянные вещи моментально самозакапываются на небольшую глубину в сухой песок и отыскать их вручную уже практически невозможно. Мистика какая то. Помню, в детстве уронил там в песок ключи от квартиры. Вот стою я, вот сюда упали ключи, но, сколько я не перекапывал тот участок — все безрезультатно. Они буквально провалились «сквозь землю». Просто заколдованное место. В то же время на этом «золотом» пляже я постоянно находил в песке чужие ключи, зажигалки, монеты, украшения и телефоны. А при последнем походе с металлоискателем – женское тонкое золотое кольцо. Оно было почти у поверхности чуть присыпано песком. Возможно, просто везение. Собственно именно под этот пляж я и делал свой металлоискатель.

Достоинства металлоискателя на биениях.

Почему именно BFO ? — Во первых, это самый простой вариант металлоискателя . Во вторых он обладает хоть какой то динамикой сигнала в зависимости от свойств предмета. Не то что импульсный металлоискатель – «пикающий» на все одинаково. Я не в коем случае не хочу принизить достоинства импульсного металлоискателя . Это тоже замечательный прибор, но для пляжа заваленного пробками и фольгой он не подходит. Многие скажут, что и металлоискатель на биениях не различает свойств предмета , воет и гудит на все одинаково. Однако это не так. Попрактиковавшись на пляже пару дней, я научился весьма неплохо определять фольгу как резкое и глубокое изменение частоты. Крышки же от пивных бутылок вызывают строго определенное изменение частоты, которое нужно запомнить. А вот монеты издают слабый, «точечный» сигнал — еле уловимое изменение частоты. Все это приходит с опытом при наличии терпения и неплохого слуха. Металлоискатель на биениях — это все-таки «слуховой» металлоискатель . Анализатором и обработчиком сигналов здесь является человек. По этому вести поиск нужно обязательно на наушники, а не на динамик. Причем лучший вариант – большие наушники, а не «затычки».

Конструкция металлоискателя.

Конструктивно я решил делать металлоискатель складным и компактным. Чтобы он влезал в обычный пакет, дабы не привлекать внимание «нормальных» людей. Иначе, добираясь до места поиска, выглядешь как «инопланетянен», или собиратель металлолома. Для этой цели я купил в магазине самое маленькое (двухметровое пятиколенное) телескопическое удилище. Оставил три колена. Получилась довольно компактное складное основание, на котором я и собрал свой металлоискатель .

Весь электронный блок был собран в уже полюбившимся мною пластиковом коробе для проводки 60х40. Из его пластмассы так же была сделана торцевая заглушка, перегородка отсека питания и крышка отсека питания.Части склеивались суперклеем и садились на болты М3. Крепление электронного блока металлоискателя к удилищу выполнено в виде металлической скобы, которая вставляется на место рыболовной катушки с леской и фиксируется штатной гайкой удилища. Получилась отличная легкая и прочная конструкция. Наружу блока выведена кнопка питания, гнездо подключения катушки (пятиконтактное гнездо от «дедушкиного» магнитофона), регулятор частоты и гнездо под джек для наушников.

Печатная плата металлоискателя изготавливалась по месту разводкой дорожек водостойким маркером. По этому, к сожалению, печатку предоставить не могу. Монтаж поверхностный навесной — без отверстий – «ленивый» — мой любимый. Так же важно после сборки платы покрыть её любым лаком для защиты от влаги и мусора. При полевых условиях это очень важно. Я, к примеру, потерял один день из за того, что во внутрь под микросхему попал какой-то мусор. Металлоискатель просто перестал работать . И мне пришлось возвращаться домой, разбирать его, продувать и вскрывать плату лаком.

Схема металлоискателя на биениях.

Сама же схема (см. ниже) была переработана и оптимизирована мной из двух схем металлоискателей . Это «» — журнал «Радио», 1987г, №01, стр 4, 49 и «Металлоискатель повышенной чувствительности » — журнал «Радио», 1994г, №10, стр 26.

В результате получилась простая и функциональная схема, обеспечивающая стабильные низкочастотные результирующие биения – то, что нужно для определения на слух малейших изменений частоты.

Стабильность и чувствительность металлоискателя обеспечивают следующие схемные решения:

Генераторы эталонный и измерительный разнесены — выполнены в отдельных корпусах микросхем – DD1 и DD2. На первый взгляд это расточительство – используется всего один логический элемент корпуса микросхемы из четырех. То есть, да, эталонный генератор собран только на одном логическом элементе микросхемы. Остальные три логические элемента микросхемы не задействованы вовсе. Точно так же построен и измерительный генератор. Казалось бы — бессмысленно не задействовать свободные логические элементы корпуса микросхем. Однако именно в этом и есть большой смысл. И состоит он в том, что если, допустим, все же собрать в одном корпусе микросхемы два генератора – они будут синхронизировать друг друга на близких частотах. Не удастся получать малейшие изменения результирующей частоты. На практике это будет выглядеть как резкое изменение частоты лишь при близком воздействии массивного металлического предмета на измерительную катушку. Иными словами резко снижается чувствительность. Металлоискатель не реагирует на мелкие предметы. Результирующая частота как бы «залипает» на нуле – до определенного момента вовсе нет биений. Еще говорят – «тупой металлоискатель », «тупая чувствительность». Кстати «Металлоискатель на микросхеме » — журнал «Радио», 1987г, №01, стр 4, 49 построен как раз на одной микросхеме вовсе. Там очень заметен этот эффект синхронизации частот. Ним совершенно невозможно искать монеты и мелкие предметы.

Так же оба генератора должны быть экранированы отдельными небольшими экранами из жести. Это на порядок повышает стабильность и чувствительность металлоискателя в целом . Достаточно, просто припаять на минус между микросхемами генераторов небольшие перегородки из жести, чтобы убедится в улучшении параметров металлоискателя. Чем лучше экран — тем лучше чувствительность (ослабляется влияние генераторов друг на друга и плюс защита от внешнего воздействия на частоту).

Электронная настройка .

Компаратор на DD3.2 – DD3.4.

Этот элемент схемы преобразует синусоидальный сигнал с выхода смесителя DD3.1 в прямоугольные импульсы удвоенной частоты.

Во первых, прямоугольные импульсы отчетливо слышны на герцовых частотах как четкие щелчки. В то время как синусоидальный сигнал герцовых частот уже с трудом различим на слух.

Во вторых, удвоение частоты позволяет более близко подойти регулировкой к нулевым биениям. В результате, регулировкой можно добиться «цоканья» в наушниках, изменение частоты которого уже можно уловить при поднесении маленькой монеты к катушке на расстоянии 30 см.

Стабилизатор питания генераторов .

Естественно, в данной схеме напряжение питания заметно влияет на частоту генераторов DD1.1 и DD2.1 металлоискателя . Причем на каждый из генераторов влияет по разному. В результате чего, с разрядом батареи немного «плывет» и частота биений металлоискателя . Для предотвращения этого в схему был введен пятивольтовый стабилизатор DA1 для питания генераторов DD1.1 и DD2.1. В результате чего частота перестала «плыть». Однако, следует сказать, что с другой стороны, из за пятивольтового питания генераторов несколько снизилась чувствительность металлоискателя в целом. По этому, эту опцию следует считать необязательной и при желании можно питать генераторы DD1.1 и DD2.1 от кроны без стабилизатора DA1. Только придется чаще подстраивать частоту вручную, регулятором.

Конструкция катушки металлоискателя.

(См. схему ниже).

Так как это не импульсный металлоискатель, а BFO , то поисковая катушка (L2) не боится металлических предметов в своей конструкции. Нам не понадобятся пластмассовый болт. То есть мы можем без опаски применять для её изготовления металлический (но только незамкнутый!) каркас и обычный металлический болт для шарнира. В последствии, при наладке схемы, все влияния металла в конструкции выведутся в ноль подстроечным сердечником катушки L1. Сама катушка L2 содержит 32 витка провода ПЭВ или ПЭЛ диаметром 0,2 – 0,3 мм. Диаметр катушки должен быть около 200 мм. Намотку удобно производить на небольшое пластмассовое коническое ведро. Полученные витки полностью обматываются изолентой и увязываются ниткой. Далее вся эта конструкция обматывается фольгой (кулинарная фольга для запекания). Сверху фольги наматывается луженая проволока несколькими витками по всему периметру катушки. Эта проволока будет выводом фольгяного экрана катушки. Еще раз все вместе обматывается изолентой. Сама катушка готова.

Каркас на котором будет располагаться катушка и которым она будет крепится к удилищу изготавливается из стальной пружинящей (не мягкой) проволоки 3-4 мм. Он состоит собственно из трех частей (смотри рисунок)– двух витых проволочных петель шарнира, которые будут соединены болтом между собой и проволочного кольца, продетого в трубку от капельницы (кольцо не должно быть замкнутым витком).

Вся эта конструкция вместе с готовой проволочной катушкой так же увязывается вместе нитками и изолентой.

Сам шарнир с катушкой крепится к удилищу увязыванием капроновыми нитками и проклейкой эбоксидной смолой.

Катушку желательно не мочить в процессе поиска и тем более не использовать для подводного поиска. Она не герметична. Попавшая во внутрь влага со временем может разрушить её.

Катушка L1 (смотри схему) мотается на каркасе от малогабаритного радиоприемника с металлическим экраном и подстроечным сердечником. Катушка содержит 65 витков провода ПЭВ диаметром 0.06мм

Я и Диод. © сайт.







Радио-конструктор: Простой металлоискатель на микросхеме К561ЛА7. (021)

Эта схема металлоискателя из всех простых схем показала наилучшие результаты. С помощью данного устройства можно обнаруживать как чёрные металлы (арматуру в стенах помещений), так и металлические предметы в грунте (как чёрные, так и цветные). Глубина обнаружения зависит от размера металлического предмета (небольшие предметы обнаруживаются на глубине до 12 см). Работа схемы основана на биении частот двух генераторов, собранных на базе отечественной микросхемы К561ЛА7, состоящей из четырёх логических элементов 2И-НЕ (К561ЛА7 можно заменить на К561ЛЕ5 или импортный аналог CD4011). Из схемы видно, что на элементах DD1.3 и DD1.4 собран образцовый генератор, с частотой которого будет сравниваться частота поискового генератора, собранного на элементах DD1.1 и DD1.2. Рассмотрим, как работают элементы схемы: Частота образцового генератора определяется параметрами конденсатора С1 и общим сопротивлением переменных резисторов R1 и R2 и лежит в пределах 200 - 300КГц. Частота поискового генератора задаётся параметрами контура С2,L1 (находится в пределах 100КГц), то есть зависит от ёмкости конденсатора и индуктивности катушки и является постоянной (условно, т.к. стабильность частоты зависит во многом от изменения температуры, напряжения питания, влажности). При работе поискового генератора вырабатывается не только основная частота 100КГц, но и кратные ей гармоники 200КГц, 300КГц, 400КГц и так далее. Чем выше гармоника, тем ниже её уровень. При работе образцового генератора (ОГ) на частоте 300КГц «нужная» нам гармоника поискового генератора (ПГ) - третья, то есть тоже 300КГц. Если мы устанавливаем резисторами R2 и R3 частоту ОГ 305КГц, а частота ПГ равна 100КГц, то третья гармоника ПГ, равная 300КГц (частоты свыше 20КГц уже не определяются на слух), с выхода конденсатора С4 смешивается с частотой ОГ на выходе конденсатора С3. Далее эти частоты поступают на диодный смеситель VD1, VD2, собранный по схеме удвоения напряжения (в один полупериод сигналы с выходов генераторов проходят через диод VD1 и заряжают конденсаторы С3 и С4, во второй полупериод напряжения с выходов генераторов складываются с напряжениями заряженных конденсаторов С3 и С4 и поступают через диод VD2 на головные телефоны Т. Диодный смеситель, выполняя роль детектора, выделяет разностную частоту 305КГц - 300КГц = 5КГц, которая в виде тонального сигнала слышна в наушниках. Почему выбрано такое соотношение частот генераторов 300КГц к 100КГц? Это наиболее оптимальное соотношение. Более высокие гармоники значительно уступают в силе сигнала и уже не прослушиваются в наушниках, а более низкие гармоники не дают такой разницы в изменении частоты, - при попадании металлического предмета в зону приёмной катушки незначительно изменяется её индуктивность, что влияет на частоту ПГ. Например, частота стала не 100.000Гц, а 100.003Гц. Разница в 3 герца на слух мало уловима, но на третьей гармонике 100.003Гц будут равны 300.009Гц, и разница с частотой ОГ будет равна 9Гц, что более заметно на слух и увеличивает чувствительность прибора. Диоды VD1,VD2 могут быть любыми, но обязательно германиевыми. С6 служит для шунтирования высокочастотных составляющих сигнала на выходе смесителя. Наушники головных телефонов надо соединить последовательно (на фото показаны выводы телефонных гнёзд для последовательного подключения стандартных стереонаушников). Все эти правила позволяют наиболее эффективно использовать выходной сигнал, не прибегая к дополнительным усилителям, усложняющим нашу конструкцию. В нашем случае громкость сигнала не влияет на чувствительность прибора. Главное в настройке - установить правильно частоту биений и ориентироваться на её изменение. Теперь к главному элементу нашей схемы - поисковой катушке. От качества её изготовления будет зависеть способность прибора к обнаружению металлических предметов.

Поисковая катушка (ПК) состоит из 50 витков медного провода типа ПЭВ, ПЭЛ, ПЭЛШО диаметром 0,2 - 0,6 мм, намотанных на оправке диаметром 12 - 18см. Способов изготовления ПК несколько. Можно нарисовать окружность диаметром 12 - 18 см на фанере, доске, фанере и др., забить по окружности гвозди, затем намотать вокруг гвоздей катушку, связать её по кругу прочно нитками, потом выдернуть гвозди. Можно намотать катушку на любую соответствующего диаметра круглую пластиковую конструкцию (например, отрезок пластиковой канализационной трубы, нижнюю часть пластмассового ведёрка, которые выбрасываются магазинами после продажи сельди, солений. Лишняя часть отрезается. Намотанную таким образом катушку желательно пропитать лаком или краской (только не нитро! Растворитель повредит лаковую изоляцию провода катушки) чтобы заполнить полости между витками, в которые может в дальнейшем попасть вода. После высыхания катушку необходимо плотно обмотать изолентой по всей поверхности. Для улучшения защитных свойств ПК и уменьшения влияния на неё внешних электрических полей, её необходимо экранировать. Можно сразу намотать катушку на согнутой в окружность и пропиленной по внешней стороне ножовкой по металлу или «болгаркой» с тонким диском медной или алюминиевой трубке, а проще взять алюминиевую фольгу для запекания, разрезать на полосы и этими полосами обмотать от начального до конечного отводов катушку, оставив не намотанным разрыв около 1 - 2 см. В противном случае получится короткозамкнутый виток, который не позволит работать катушке. Учитывая, что не у всех есть возможность припаять «земляной» провод к алюминиевому экрану, можно зачистить 3 - 8 см изоляции с провода, обмотав оголённым концом алюминиевый экран и примотав его плотно изолентой. Желательно изолированные соединительные провода от катушки до платы также экранировать алюминиевой фольгой, соединив её с тем же заземляющим проводом тем же методом, что и в катушке. Настройку прибора можно начинать уже после намотки ПК до её пропитки и экранирования. Всё остальное - это уже усовершенствование прибора. Если всё собрано правильно, то после подключения ПК к схеме и подаче питания (соблюдайте полярность подключения источника питания и правильность установки микросхемы в панельку) в наушниках, при вращении переменного резистора R2 «Грубо», будут слышны биения частот генераторов. При отсутствии специальных приборов (осциллограф, частотомер) работу генераторов можно определить любым вольтметром, подключенным вместо наушников. Отпаяв от диодного смесителя конденсатор С4, вольтметр покажет работу ОГ в виде напряжения приблизительно равного напряжению питания схемы. И наоборот, отпаяв С3, мы увидим по аналогичным показаниям вольтметра работу ПГ. Работа обоих проявляется в прослушивании тона биений в наушниках. Резистор R2 позволяет перестраивать частоту ОГ в широком диапазоне, что проявляется в многократно появляющихся биениях в наушниках. Теперь надо внимательно проверить эти биения, выбрать наиболее «мощные» (резистор R3 должен находиться в среднем положении). При проверке каждой из гармоник, резистор R2 надо установить в такое положение, чтобы «звонкий» тон сигнала шёл на понижение тона. Дальнейшую настройку необходимо проводить резистором R3 «Точно» и добиться того, чтобы тон биений перешёл в хрип и щелчки. Это положение и есть рабочее с максимальной чувствительностью. Далее берём предмет из чёрного металла и подносим к катушке - тон сигнала должен увеличиться. При поднесении к катушке предмета из цветного металла (алюминий, медь, латунь), тон сигнала должен наоборот уменьшиться или полностью сорваться. Если это не происходит или происходит наоборот, необходимо перестроить ОГ на другую гармонику и проделать всё сначала. Как только вы нашли «нужную» гармонику, необходимо запомнить положение R2 и в дальнейшем работать только с R3, максимально настраиваясь на рабочий участок биений. Чем точнее вы на него настроитесь, тем выше будут результаты поиска. После того, как вы поняли принцип работы, можно приступать к совершенствованию поисковой катушки. При сборке схемы металлические части переменных резисторов R2, R3 необходимо соединить с общим (минусовым) проводом, иначе приближение руки к ручке будет влиять на частоту биений. Желательно, для уменьшения влияния внешних факторов, схему прибора поместить в металлический корпус, соединённый с общим

Металлоискатель на микросхеме

Подобное устройство уже было описано в статье И. Нечаева под аналогичным названием в "Радио", 1987, N9 1, с. 49 . В отличие от него, в предлагаемом варианте всего одна катушка индуктивности и несколько иное построение схемы, позволившее обойтись еще и без конденсатора переменной емкости.

Схеме металлоискателя приведена на рис. 1. Как и в упомянутой конструкции, в нем два генератора: один выполнен на элементах DD1.1 и DD1.2, а второй - на элементах DD1.3 и DD1.4. Частота первого генератора (перестраиваемого) зависит от емкости конденсатора С1 и суммарного сопротивления резисторов R1, R2. Подстроечным резистором R1 устанавливают рабочий диапазон генератора, а переменным резистором R2 плавно изменяют частоту генератора в этом диапазоне. Частота второго генератора зависит от емкости конденсатора С2 и индуктивности поисковой катушки L1.

Сигналы обоих генераторов поступают через развязывающие конденсаторы СЗ и С4 на детектор, выполненный на диодах VD1, VD2 по схеме удвоения напряжения. Нагрузкой детектора являются головные телефоны BF1 - на них выделяется разностный сигнал в виде низкочастотной составляющей, преобразуемой затем телефонами в звук. Конденсатор С5 шунтирует нагрузку по высшим частотам, иначе говоря, замыкает на общий провод сигналы обоих генераторов.

Когда поисковая катушка приближается к металлическому предмету, частота второго генератора изменяется. В результате изменяется тональность звука в головных телефонах. По этому признаку обнаруживают металлические предметы в зоне поиска, например, подслоем грунта, снега. Немалую помощь окажет металлоискатель при определении места прокладки арматуры и скрытой проводки во время строительных работ в доме.

Кроме указанной на схеме, в металлоискателе можно применить микросхему К176ЛА7, К176ПУ1 К176ЛУ2 (две последние микросхемы - так называемые преобразователи уровня), К561ЛА7, К174ЛА7. К561ЛН2. Подстроечный резистор R1 - СП5-2 переменный R2 - СПО-0,5. но подойдут и другие малогабаритные резисторы. Оксидный конденсатор - К50-12 или другой малогабаритный на номинальное напряжение не менее 10 В, остальные конденсаторы могут быть, например, КМ 6

Катушка L1 размещается в кольце диаметром 200 мм из алюминиевой или медной трубки с внутренним диаметром 8 мм. Концы трубки должны отстоять друг or друга но некотором расстоянии, чтобы не получился короткозамкнутыйтый виток. Для намотки катушки используют провод ПЭЛШО (в эмалевой и шелковой изоляциях) диаметром 0,5 мм, стараясь протянуть внутри трубки возможно большее число витков. Эта операция мотет показаться трудоемкой, поэтому можно воспользоваться методикой, описанной в вышеупомянутой статье,- уложить сначала внутри трубки отрезки проводе, а затем согнуть трубку в кольцо и соединить отрезки последовательно для получения многовитковой катушки. Выводы катушки в дальнейшем подключают к печатной плате, а трубку соединяют с общим проводом.

Головные телефоны BF1 - ТА-4 ТОН-1 или другие, с возможно большим сопротивлением Источник питания - батарея "Крона" или другой, напряжением около 9 В.


Рис.2


Рис.3


Рис.4

Большая часть деталей металлоискателя смонтирована на фигурной печатной плате (рис. 2 и 3) из одностороннего фольгированного стеклотекстолита. Выводы резисторов R1 и R2 соединяют с соответствующими цепями устройства либо с помощью отпровода либо печатными проводниками, если монтаж ведется на двустороннем фольгировеи ном материале. Плату размещают внутри Г-образно о кожуха разъема ШР (рис 4) и крепят к одной из его половин с помощью гайки, навинчиваемой снаружи на переменный резистор R2. Для доступа к винту регулировки подстро-ечного резистора R в кожухе пропиливают отверстие.

Источник питания размещают внутри ручки-футляра которая может быть как пластмассовая, так и металлическая (скажем, футляр от круглого карманного фонаря). Сверху на ручке-футляре крепят кнопку включения питания SB1 а на дне - розетку X1 для подключения головных телефонов.

Кольцо с катушкой крепят в переходнике из изоляционного материала, а уже переходник прикрепляют к кожуху. В итоге получается компактная конструкция, удобная в работе.

Налаживание металлоискателя сводится к подбору частоты первого генератора. Предварительно движки подстроечного и переменного резисторов ставят примерно в среднее положение и временно замыкают контакты кнопки SB1. Перемещением движка резистора R1 добиваются наиболее низкого тона в головных телефонах. Если звука нет, следует подобрать конденсатор 2. Работа облегчится, если воспользуетесь осциллографом. Его входной щуп подключают сначала к выводу 11 микросхемы и измеряют частоту первого генератора, а затем касаются щупом вывода 4 микросхемы и измеряют частоту второго генератора. Сравнение результатов измерений позволит быстро определить, какой конденсатор С2 (меньшей или большей емкости) нужно установить в генератор.

При появлении помех или сбоев в работе прибора из-за взаимного влияния генераторов можно рекомендовать впаять конденсатор емкостью 0,01...0,1 мкФ между выводами 7 и 14 микросхемы.

Методика работы с прибором та же, что и с металлоискателем И. Нечаева .

В. ЯВОРСКИЙ г. Киев

Эта же схема, но с другой печатной платой и конструкцией описана в статье Простой металлоискатель на микросхеме К176ЛЕ5 книги Адаменко М.В. "Металлоискатели" М.2006 (Скачать книгу).

Несложный металлоискатель схема

Щас начинается весна.Многие радиолюбители и просто пользователи любят увлекатся поиском металлов на улице,или на огородах,будь то манеты или гильзы с ВОВ. В статье я предлогаю несложную схему металлоискателя , которые собрать может за два вечера даже начинающий,так как схема подойдет даже начинающему .

Металлоискатель собран на микросхеме К175ЛЕ5.

Работает на биениях частот и в своей основе содержит два генератора. Один генератор собран на элементах DD1.1, DD1.2 а второй - на элементах DD1.3. DD1.4.


Частота первого перестраиваемого генератора зависит от емкости конденсатора С1 и общего сопротивления резисторов R1 и R2. Переменным резистором плавно изменяют частоту генератора в диапазоне частот, установленном подстроечным резистором. Частота другого генератора зависит от параметров поискового колебательного контура L1 С2. Сигналы от генераторов поступают на детектор, выполненный по схеме удвоения напряжения на диодах VD1 и VD2.

Нагрузкой детектора являются наушники. На них и выделяется разностный сигнал в виде звука. Конденсатор С5 шунтирует наушники по высокой частоте.


При приближении поисковой катушки к металлическому предмету, происходит изменение частоты генератора на DD1.3, DD1.4. От этого меняется тональность звука. По этому изменению тона и определяют, находится ли железный предмет в зоне поиска. В схеме металлоискателя микросхему К176ЛЕ5 можно заменить на микросхемы К176ЛА7, К561ЛА7, К564ЛА7. Цена такой микросхемы на радиобазаре всего 0,2 доллара. Подстроечный резистор R1 типа СП5-2, переменный R2 - СПО-0,5. Поисковая катушка мотается проводом ПЭЛШО 0,5-0,8.


Для питания схемы металлоискателя используется батарея типа «Крона» на 9 вольт или другой аналогичный источник. Испытания показали довольно неплохую работу прибора, поэтому для новичков в радиоэлектронике эту схему можно смело рекомендовать для повторения.

Автор статьи: Шимко С.


Close